
FTMesh: Efficient Fault Tolerance for Interactive
Applications on Service Mesh

Qiutong Men
New York University Shanghai

1 Motivation
Interactive applications, e.g., video conferencing applica-
tions, online games, and augmented and virtual reality appli-
cations, impose near real-time bounds on processing latency.
Violating these processing requirements can lead to user-
visible quality degradation, and in the worst case can render
application inoperative. Similar to other distributed applica-
tions, these services are increasingly built out of multiple
microservices, all of which must work in concert to fulfill
processing requirements. In this paper, we describe our ongo-
ing research on developing a generic fault-tolerance approach
that allows these applications to meet their stringent process-
ing deadlines in the presence of failures.
Meeting processing latency requirements under these

stringent processing bounds is challenging: failure recov-
ery for applications such as video conferencing must take
significantly less than a few-100 milliseconds, and the inabil-
ity to do so can lead to user-visible artifacts. This recovery
time is far below what current microservice orchestrators
target, necessitating the development of new techniques.
Current approach: We investigated the failure recovery
mechanism of Jitsi [3], an open-source video conferencing
service. It is composed of multiple services, and frequently
deployed using Kubernetes, thus meeting our goals. Fig-
ure 1(a) shows part of Jitsi’s failure recovery mechanism:
when a video bridge failure is detected, the health-checker
notifies the conference controller, which selects an alter-
nate video bridge (a target) to take over for the failed one,
and synchronizes session state with the target. Once state
synchronization is completed, the target bridge informs the
controller, which then notifies the client, and they establish
connections with the target. We observe from the timeline
of this procedure in Figure 1(b), that re-establishing client
connections (which can take more than a second) and state
synchronization (which takes about 13ms) are bottlenecks
during failure recovery.
Our proposal: FTMesh aims to reduce client re-connection
time by having the virtual network transparently reroute traf-
fic to the target instance; and reduce state synchronization
time by proactively replicating state to the target instance
before failure. FTMesh leverages service mesh [2] and its net-
work abstractions [6] for both, and thus provides a general
mechanism that can be used by any interactive application.

2 Existing Approaches
Microservice orchestrators, e.g., Kubernetes [4] and No-
mad [5], restart services on failures. This approach assumes
that services are either stateless, or can reconstruct any
state lost on failure by reading an application generated
checkpoint from stable storage. Interactive applications of-
ten employ services that are not stateless, and their perfor-
mance requirements can make periodic checkpoints infeasi-
ble. Prior work has suggested alternate approaches where
the orchestrator checkpoints containers [10, 11] using light-
weight mechanisms, but as we showed above, state synchro-
nization and connection re-establishment latencies make
these approaches unsuitable for interactive applications.
Low-overhead fault tolerance approaches have formerly

been developed for network functions [7–9] whose process-
ing requirements are similar to those of interactive applica-
tions. However, network functions have simpler semantics,
state access patterns, and communication graphs than the
microservice based applications we target. Our work is thus
inspired by these prior efforts, but also distinct from them.

3 Design
FTMesh functionality is implemented using sidecars, which
are per-instance proxies [1] in the service mesh that have
visibility into all traffic sent or received by the instance.
State Synchronization: Figure 2a shows FTMesh’s state
synchronization mechanism, which runs during normal ap-
plication execution. Our mechanism assumes that services
identify critical state (that required for recovery), and in-
cludes updated values for this state in the request and re-
sponse bodies. We do not require changes to the RPC library
to do so, since we make the proxy to remove this data be-
fore messages are delivered to the RPC library. This state is
replicated at FTMesh agents in the target service’s proxy. As
an optimization, we can allow state synchronization to be
piggybacked on existing application traffic.
Recovery and Re-routing:When failures are detected, the
FTMesh recovery process proceeds as follows: (a) first, the
target’s FTMesh agent uses the synchronized state to recover
sessions of the failed service; and (b) once these new sessions
has been initialized, we update the service mesh network to
forward traffic intended for the failed instance to the new
instance. We show this in Figure 2b.
Optimization: Pushing the connection information to the
whole cluster wastes communication resources on unrelated

1



Figure 1. Failover procedure and time breakdown of Jitsi.

(a) The state synchronization procedure.
In reality, the state is synchronized with
multiple target instances.

(b) The failover procedure.

Figure 2. The design of FTMesh.

instances, and cannot ensure critical connections get recov-
ered first. We thus rely on existing Service Mesh controller’s
capability of broadcasting configurations to non-critical in-
stances eventually (slow update).

4 Preliminary Results
We build a prototype of FTMesh and do micro-benchmarks
on an LAN cluster.
Operation Overhead: We measure the time of requests of
different size settings. Figure 3 shows that FTMesh incurs
20% latency overhead when attaching 100KB state to a 1MB
request, and increases average latency by 2.57ms, 32%.
States Recovery: We measure the time of delivering the
state to an instance from a local Sidecar or a remote Con-
troller. Figure 4 presents the time difference. FTMesh can
achieve 27% shorter delivery time on average.
Re-routing: We evaluate the re-routing performance by
measuring the time from new routing configuration being
composed to data arriving at the new instance. Our prototype
re-routes UDP traffics with 50.43ms on average.

5 Challenges
#1 Non-determinism: Many services are multi-threaded
and have global state for higher throughput. Concurrent
nature requires correct replication and recovery procedures
to avoid messing up service state.
#2 Application integration:We rely on service to attach
state to the traffic. Assisting existing services to identify

Figure 3. Overheads of state
synchronization during nor-
mal requests.

Figure 4. Performance of
state recovery.

critical state, and providing interfaces for building new ap-
plications require careful design. This is rather critical as we
assist synchronizing state under multi-thread contention.
#3 Growing state size and complexity: Modern ser-
vices contain large state and complicated memory refer-
ences. How to ensure the performance as the state size and
(un)marshalling time grow challenges state update and en-
coding mechanisms.

2



References
[1] 2023. Envoy Proxy. https://www.envoyproxy.io/
[2] 2023. Istio. https://istio.io/latest/
[3] 2023. Jitsi. https://jitsi.org/
[4] 2023. Kubernetes. https://kubernetes.io/
[5] 2023. Nomad. https://developer.hashicorp.com/nomad
[6] Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. 2021. Lever-

aging Service Meshes as a New Network Layer. In Proceedings of the
Twentieth ACM Workshop on Hot Topics in Networks (Virtual Event,
United Kingdom) (HotNets ’21). Association for Computing Machinery,
New York, NY, USA, 229–236. https://doi.org/10.1145/3484266.3487379

[7] Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and
Ali José Mashtizadeh. 2020. Fault Tolerant Service Function Chaining.
In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 198–210.
https://doi.org/10.1145/3387514.3405863 event-place: Virtual Event,
USA.

[8] Sameer G Kulkarni, Guyue Liu, K. K. Ramakrishnan, Mayutan Aru-
maithurai, Timothy Wood, and Xiaoming Fu. 2018. REINFORCE:

Achieving Efficient Failure Resiliency for Network Function Virtual-
ization Based Services. In Proceedings of the 14th International Confer-
ence on Emerging Networking EXperiments and Technologies (CoNEXT
’18). Association for Computing Machinery, New York, NY, USA, 41–
53. https://doi.org/10.1145/3281411.3281441 event-place: Heraklion,
Greece.

[9] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind
Krishnamurthy, Christian Maciocco, Maziar Manesh, João Martins,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM ’15).
Association for Computing Machinery, New York, NY, USA, 227–240.
https://doi.org/10.1145/2785956.2787501 event-place: London, United
Kingdom.

[10] Diyu Zhou and Yuval Tamir. 2020. Fault-Tolerant Containers Using
NiLiCon. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 1082–1091. https://doi.org/10.1109/IPDPS47924.
2020.00114 ISSN: 1530-2075.

[11] Diyu Zhou and Yuval Tamir. 2022. RRC: Responsive Replicated Con-
tainers. In 2022 USENIX Annual Technical Conference (USENIX ATC 22).
USENIX Association, Carlsbad, CA, 85–100. https://www.usenix.org/
conference/atc22/presentation/zhou-diyu

3

https://www.envoyproxy.io/
https://istio.io/latest/
https://jitsi.org/
https://kubernetes.io/
https://developer.hashicorp.com/nomad
https://doi.org/10.1145/3484266.3487379
https://doi.org/10.1145/3387514.3405863
https://doi.org/10.1145/3281411.3281441
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1109/IPDPS47924.2020.00114
https://doi.org/10.1109/IPDPS47924.2020.00114
https://www.usenix.org/conference/atc22/presentation/zhou-diyu
https://www.usenix.org/conference/atc22/presentation/zhou-diyu

	1 Motivation
	2 Existing Approaches
	3 Design
	4 Preliminary Results
	5 Challenges
	References

